Augmented Lagrangian Methods for Numerical Solutions to Higher Order Differential Equations
نویسندگان
چکیده
منابع مشابه
Higher order numerical methods for solving fractional differential equations
In this paper we introduce higher order numerical methods for solving fractional differential equations. We use two approaches to this problem. The first approach is based on a direct discretisation of the fractional differential operator: we obtain a numerical method for solving a linear fractional differential equation with order 0 < α < 1. The order of convergence of the numerical method is ...
متن کاملRenormalization methods for higher order differential equations
We adapt methodology of statistical mechanics and quantum field theory to approximate solutions to an arbitrary order ordinary differential equation boundary value problem by a second-order equation. In particular, we study equations involving the derivative of a double-well potential such as u− u3 or − u + 2u3. Using momentum (Fourier) space variables we average over short length scales and de...
متن کاملOn Solutions For Higher-Order Partial Differential Equations
It is generally recognized that the method of separation of variables is one of the most universal and powerfu l technique for the study of linear PDE's. Although the technique can be applied in its traditional form to any linear PDE as long as mixed derivatives are absent, it is a common belief that in their presence, variables separation is not realizab le. In what follows, a modified and sim...
متن کاملThe Order of Numerical Methods for Ordinary Differential Equations
For a general class of methods, which includes linear multistep and RungeKutta methods as special cases, a concept of order relative to a given starting procedure is defined and an order of convergence theorem is proved. The definition is given an algebraic interpretation and illustrated by the derivation of a particular fourth-order method.
متن کاملComparing Numerical Methods for Solving Nonlinear Fractional Order Differential Equations
This paper is a result of comparison of some available numerical methods for solving nonlinear fractional order ordinary differential equations. These methods are compared according to their computational complexity, convergence rate, and approximation error. The present study shows that when these methods are applied to nonlinear differential equations of fractional order, they have different ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Applied Mathematics and Physics
سال: 2017
ISSN: 2327-4352,2327-4379
DOI: 10.4236/jamp.2017.52021